There’s been some Friday night kernel drama on the Linux kernel mailing list… Linus Torvalds has expressed regrets for merging the Bcachefs file-system and an ensuing back-and-forth between the file-system maintainer.
There’s been some Friday night kernel drama on the Linux kernel mailing list… Linus Torvalds has expressed regrets for merging the Bcachefs file-system and an ensuing back-and-forth between the file-system maintainer.
For me the reason was that I wanted encryption, raid1 and compression with a mainlined filesystem to my workstation. Btrfs doesn’t have encryption, so you need to do it with luks to an mdadm raid, and build btrfs on top of that. Luks on mdadm raid is known to be slow, and in general not a great idea.
ZFS has raid levels, encryption and compression, but doesn’t have fsck. So you better have an UPS for your workstation for electric outages. If you do not unmount a ZFS volume cleanly, there’s a risk of data loss. ZFS also has a weird license, so you will never get it with mainline Linux kernel. And if you install the module separately, you’re not able to update to the latest kernel before ZFS supports it.
Bcachefs has all of this. And it’s supposed to be faster than ZFS and btrfs. In a few years it can really be the golden Linux filesystem recommended for everybody. I sure hope Kent gets some more help and stops picking fights with Linus before that.
ZFS doesn’t have fsck because it already does the equivalent during import, reads and scrubs. Since it’s CoW and transaction based, it can rollback to a good state after power loss. So not only does it automatically check and fix things, it’s less likely to have a problem from power loss in the first place. I’ve used it on a home NAS for 10 years, survived many power outages without a UPS. Of course things can go terribly wrong and you end up with an unrecoverable dataset, and a UPS isn’t a bad idea for any computer if you want reliability.
Totally agree about mainline kernel inclusion, just makes everything easier and ZFS will always be a weird add-on in Linux.
Why involve mdadm? You can use one btrfs filesystem on a pair of luks volumes with btrfs’s “raid1” (or dup) profile. Both volumes can decrypt with the same key.
ngl, the number of mainline Linux filesystems I’ve heard this about. ext2, ext3, btrfs, reiserfs, …
tbh I don’t even know why I should care. I understand all the features you mentioned and why they would be good, but i don’t have them today, and I’m fine. Any problem extant in the current filesystems is a problem I’ve already solved, or I wouldn’t be using Linux. Maybe someday, the filesystem will make new installations 10% better, but rn I don’t care.
It’s a filesystem that supports all of these features (and in combination):
If that is meaningless to you, that’s fine, but it sure as hell looks good to me. You can just stick with ext3 - it’s rock solid.
Encryption and compression don’t play well together though. You should consider that when storing sensitive files. That’s why it’s recommended to leave compression off in https because it weakens the encryption strength
How does that work? Encryption should not care at all about the data that is being encrypted. It is all just bytes at the end of the day, should not matter if they are compressed or not.
Disabling compression in HTTPS is advised to prevent specific attacks, but this is not about compression weakening encryption directly. Instead, it’s about preventing scenarios where compression could be exploited to compromise security. The compression attack is used to leak information about the content of the encrypted data, and is specific to HTTP, probably because HTTP has a fixed or guessable structure.
Looks to be an exploit only possible because compression changes the length of the response and the data can be injected into the request and is reflected in the response. So an attacker can guess the secret byte by byte by observing a shorter response form the server.
That seems like something not feasible to do to a storage device or anything that is encrypted at rest as it requires a server actively encrypting data the attacker has given it.
We should be careful of seeing a problem in one very specific place and then trying to apply the same logic to everything broadly.
It is only in TLS where you have to disable compression, not in HTTP.
https://security.stackexchange.com/questions/19911/crime-how-to-beat-the-beast-successor/19914#19914
Could you explain how a CRIME attack can be done to a disk?