Remember reading an article a while back where they said they did it. Can’t find it but never really explained how it is even possible or how or why someone said look light lets put some data in itl

  • Death_Equity@lemmy.world
    link
    fedilink
    English
    arrow-up
    0
    ·
    1 month ago

    The simple way is like Morse code, variable gaps and lengths of emissions to convey information.

    The more complex version is that plus variable intensity and variable wavelengths for a more complex “language”.

      • .Donuts@lemmy.world
        link
        fedilink
        English
        arrow-up
        0
        ·
        1 month ago

        If you flip a sine wave upside down (shift it 180 degrees), it can mean “1.” If the wave stays as it is, it can mean “0.” This flipping happens really fast, creating a pattern of 1s and 0s. That’s your data.

        A special receiver then measures the wave’s shifts and turns them back into the original 1s and 0s.

        Instead of just flipping the wave or not, you can also shift it by smaller angles:

        • No shift (0°) = 00
        • Small shift (90°) = 01
        • Bigger shift (180°) = 10
        • Biggest shift (270°) = 11

        This way, each wave can carry two bits of data instead of one, making it faster.

        • Don_Dickle@lemmy.worldOP
          link
          fedilink
          English
          arrow-up
          0
          ·
          1 month ago

          I may be going out on a limb but something tells me we are far off from like transmitting a whole book and storing it in light or beam?

          • Rhynoplaz@lemmy.world
            link
            fedilink
            English
            arrow-up
            1
            ·
            1 month ago

            There’s no storage in light.

            Think about when you talk. The sound comes out, shoots through the air, goes in someone’s ear, and then they interpret and remember what you said.

            The light is your voice. It is transmitting data, but if there’s nobody around to hear it, the data is lost.

            The light has to hit a receiver, which translates it into usable data and then saves it to a storage device.